
Technical Specifications
for Platform Development

Contents
1 of 13 1

Contents

1. General Information about the Product. .	 2

2. Software Requirements. .	 3

2.1. Functional Requirements. .	 3

2.2. Server Requirements. .	 4

3. Description of System Components. .	 5

3.1. Payment Processing. .	 5

3.2. MiraWallet (macOS, Windows, Linux). .	 5

3.3. Mobile Application (iOS, Android). .	 5

3.4. Web-application. .	 6

3.5. Oracles + Nodes. .	 6

3.5.1. Ethereum Private Network Node. .	 6

3.5.2. MiraOracle. .	 6

3.5.3. MiraNode. .	 6

4. Classes, Roles and Characteristics of Users. .	 7

5. Mira Platform Internal Token. .	 9

6. User-System Interaction Scheme. .	 10

7. Security. .	 12

7.1. Multisignature Mechanism. .	 12

7.2. MiraBox File Double Encryption. .	 12

7.3. Oracles. .	 12

General Information about the Product
2 of 13 2

1. General Information about
the Product

Mira – a decentralized service presented as a desktop/mobile/web application, allowing user operations
with MiraBox container(s).

MiraLab.io – an online service for working with MiraBox container(s).

MiraWallet – a desktop application (macOS, Windows, Linux) for working with MiraBox container(s).

MiraWallet Mobile – a mobile application for devices based on iOS and Android.

MiraNet – the Ethereum-based Mira blockchain.

Smart contract – the essence of the Mira Blockchain containing metadata on the box and its current
status (open/closed.)

MRC – the MiraNet network currency that is technically presented as ether and is used for gas payments
within MiraNet; can be exchanged for Mira tokens at a 1:1 rate.

MIRA token – the currency for the MainNet; it is placed on exchanges and is given to investors as
payment during the ICO. Can be exchanged for MRC at the rate of 1:1.

SmartBox Laboratory - a separate branch of the Mira platform where third-party developers can create
customized smart contracts and offer them to the system.

MiraBox – a container that consists of a file and an attached contract in MiraNet.

MultiBox – a type of MiraBox whose body consists of:

•	 Currency #1 (one of the currencies in the container)

•	 Currency #2 (one of the currencies in the container)

•	 Currency #N (one of the currencies in the container)

•	 File (0<25 MB) - any type of file up to 25MB

NominalBox – a type of MiraBox whose body consists of:

•	 Currency - single currency in a container

SmartBox – a MultiBox with an underlying smart contract. The smart contract can restrict the opening of
SmartBox contents before meeting or reaching certain external conditions, when receiving information
from oracles.

Private MiraBox – has a minimum of open information: id number, opening status and public keys to the
nodes used for encryption.

MiraOracles – offchain systems analyzing data that can be used as SmartBox opening conditions.

MiraNode – one of the server-end components which provides generation and storage of keys to
multisignature contracts/wallets for all supported cryptocurrencies.

Software Requirements
3 of 13 3

2. Software Requirements

2.1. Functional Requirements

Mira develops an open multicomponent service whose members can be presented as server entities as
well as as client software users.

Server software should include the following components: MiraNet, MiraNode, and MiraOracle, which
can be installed partially as well as fully. Owners of servers where the aforementioned services will be
located, will be able to receive income from performing operations connected with supporting the Mira
infrastructure.

•	 MiraNet (Ethereum Private Network Nodes) hosting owners - payment for transaction mining.

•	 MiraNode server owners - payment for MiraBox decryption.

•	 MiraOracle administrators - payments for successful oracle predictions.

Users can access services with the help of a browser (MiraLab), mobile phone (MiraWallet Mobile) or
Windows/macOS/Linux desktop computer (MiraWallet).

•	 MiraBox consists of a file and contract components. The following data is stored in the container:

•	 MiraBox ID - identifier presented as a unique ECDSA public key

•	 Contract – MiraNet address of a contract which contains information about the container and its
condition

•	 Public Data – open access information on the given container

•	 Private Data – contains an ECDSA private key encrypted with a symmetrical AES-256 key. The
private key corresponds with the MiraBox ID.

When creating a MiraBox the corresponding contract is deployed. Its address is recorded in the open
“Contract” field inside the file. Moreover, the contract can always be used to check the opening status of
the container, as well as to find out what kind of data is in it.

A contract stores:

•	 Type – (of content)

•	 MultiBox - if MiraBox also contains encrypted content that is not cryptocurrency

•	 NominalBox

•	 Conditions - opening conditions

•	 Box (MiraBox without opening conditions)

•	 SmartBox (MiraBox with particular opening conditions)

Software Requirements
4 of 13 4

•	 Creation Date

•	 Opening date

•	 State (status)

•	 Nodes - a set of addresses for nodes participating in encryption

•	 Currencies - a set of multisignature address(-es) of one or several currencies in the container

•	 Hash - sha256-hash from the encrypted part of a MiraBox file necessary to protect it (the file) from
spoofing

MiraBoxes that contain only cryptocurrency and have nominal value corresponding with the content
value are called NominalBox.

When creating a MiraBox, the platform generates a public key to the selected wallet to which funds can
be transferred from a personal wallet or which can be used to buy cryptocurrency through the platform
using fiat money.

2.2. Server Requirements

Recommended requirements for the server equipment:

•	 2 GB RAM

•	 2 CPU Cores

•	 50GB SSD/HDD Storage

A Node should include an Ethereum node server (for example Geth) with properly set up configuration
for working in private network mode.

The private network (MiraNet) should have all the Ethereum functions including the support of
creation/execution of smart contracts and interaction with them.

The second important component of the server-end is the MiraNode service. It presents the main part
of the server’s functionality. The service provides generation and storage of keys to multisignature
contracts/wallets for all supported currencies.

One more server entity, functioning as a smart-oracle, is MiraOracle. This is presented by the service
monitoring MiraNet event logs and reacting to them by checking offchain-events and reporting them
back to the contract through a transaction.

Interaction of server components with each other and their connection with the client software is
mainly carried through a smart contract on MiraNet.

https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum/wiki/Setting-up-private-network-or-local-cluster
https://github.com/ethereum/go-ethereum/wiki/Setting-up-private-network-or-local-cluster

Description of System Components
5 of 13 5

3. Description of System Components

3.1. Payment Processing

3.2. MiraWallet (macOS, Windows, Linux):

3.3. Mobile Application (iOS, Android)

Functions

A centralized web-system that accepts fiat payments and can make cryptocurrency deposits to
MiraBoxes. On one hand this is presented as the payment gateway in a similar way to (for example)
www.interkassa.com, on the other hand as the minter-blockchain that deposits MRC to users after
successful payment processing.

Provides the functionality for creating and opening MiraBoxes. Upon launch the application updates
the Node registry and requests statuses of the containers created earlier.

Duplicates the functions of the desktop application. Has a feature for exporting MiraBox files through
e-mail and messengers.

1. Creating MiraBoxes:

Provides users with a choice of appropriate settings through a container configurator allowing the
creation of common MiraBoxes, as well as SmartBoxes.

After entering the characteristics, a user either pays using payment processing or deposits
cryptocurrency on their own. The box is then registered on the blockchain and user sets a password
encrypting the content, and the application provides a MiraBox in the form of a file.

2. Opening:

In order to see MiraBox contents in a decrypted form, a user can simply transfer the file to the
application window and enter the password. Then, the desktop application will in turn make a request
to the Mira blockchain.

http://www.interkassa.com

Description of System Components
6 of 13 6

3.4. Web-application

3.5. Oracles + Nodes

The application’s functions, including MiraBox generation should be presented mostly by scripts
running on the client component except for requests to Nodes and the blockchain. Requests to nodes
are executed through JSON-RPC. Integration with the MiraNet blockchain can be realized through
Metamask/Mist configured on Mira or through an external web3-provider. The web application
interface should be visually similar to the desktop one, however, it’s layout should be adaptive to
support devices with different display resolutions.

According to its functions, as well as MiraWallet, it is divided into the following sections:

1. Designing MiraBoxes, choosing the set of cryptocurrencies for building nominal containers.

•	 SmartBox configurator, instruction generation for oracles.

2. Viewing MiraBoxes.

•	 Viewing the status/metadata of an opened container from a file and on the blockchain.

•	 Decryption and fund withdrawal from MiraBoxes.

Present a number of microservices: Ethereum Private Network Node, MiraOracle, and MiraNode.

3.5.1. Ethereum Private Network Node

Provides everything necessary for operational capabilities of the Ethereum-based private network
including its smart contract mechanism.

3.5.2. MiraOracle

The system enabling performing of decentralized offchain operations similarly to ChainLink
and Oraclize. Oracles in the system are a necessary source of external information for executing
SmartBoxes.

3.5.3. MiraNode

One of the main system components. At the same level as Mira user applications. The Mira blockchain
provides distributed encryption/decryption of containers of different types.

Classes, Roles and Characteristics
 of Users
7 of 13 7

4. Classes, Roles and Characteristics
of Users

Role Features

MiraBox
viewing and
validation

NominalBox MultiBox SmartBox

User +

Authorized User + + + +

Tokenholder. Administrator + + + +

Tokenholder. Arbitrator + + + +

User

Having installed the application or after visiting miralab.io site any visitor can use the following
functions without registering or logging in:

•	 Viewing the public information on MiraBoxes in MiraNet including nominal;

•	 Checking the MiraBox files’ integrity and authenticity.

Authorized user

Registration and logging into the system is carried out using ECDSA key pairs which can be imported/
exported between different devices.

The registration process is presented as a local generation of a pair of keys which cannot be transferred
to a third party or to Mira microservices for security reasons. However, for a user’s convenience they
can transfer their keys to another device using QR-codes or just by copying them. An authorized user
has access to all platform services and can:

•	 Create a MiraBox (Nominal or Multi)

•	 Use the SmartBox constructor.

In the mobile application an account can be further protected with a short digital pin-code. In iOS the
application can be protected by Touch ID or Face ID (iPhone X).

Classes, Roles and Characteristics
 of Users
8 of 13 8

Tokenholder-Administrator

Has the same capabilities as an authorized user, as well as the right to organize their own Mira system
node with the possibility of monetization using:

•	 Offchain-event prediction (Oracle)

•	 transaction mining

•	 storing MiraBox keys

Tokenholder-Arbitrator - a user certified by the Mira platform. Has all the rights of an authorized user,
as well as access to the transaction where their participation was activated. An arbitrator has the right
to resolve disputed issues.

Mira Platform Internal Token
9 of 13 9

5. Mira Platform Internal Token

MiraNet

MainNet

Buying MiraBox for MiraCoins
Buying MiraCoins for fiat money
Exchanging MiraCoins between platform users

Buying MRC on an exchange or during the ICO
Exchanging MRC at exchanges
Selling MRC on exchanges

Selling MRC
Exchange 1:1
MRC:MiraCoin

MRC - is the internal currency of the service structurally presenting as an Ether analog for the MiraNet
network. MRC performs payment functions, enables buying of SmartBoxes and simultaneously serves
as gas payment for executing smart contracts. MRC can be exchanged at any time for MIRA token at
the rate of 1:1.

MRC can be transferred from one user to another. There are two ways to receive MRC:

1.	 Buying MIRA tokens during the ICO or at an exchange, then exchanging them for MRC;

2.	 Buying MRC for fiat money through the payment gateway.

User-System Interaction Scheme
10 of 13 10

6. User-System Interaction Scheme

1. User initiates (Smart) MiraBox creation in an application (Desktop/Web/Mobile) and configures
conditions for when the Box can be opened. In addition, the smart contract responsible for a particular
box is deployed, and at this time a user is charged in MRC.

At this point, the contract only describes metadata:

•	 openness (open/private),

•	 content (BTC/ETH/DASH/LTC. . .),

•	 nominal (MultiBox/NominalBox:amount),

•	 opening conditions (box/SmartBox)

•	 other data - time of creation, identifier, etc.

MiraNet

Mira Wallet
(Creator)

5. Public key uploads 1. MiraBox Value

Smart Contract

open\private
BTC\ETH\DASH\LTC\.. .
MultiBox\NormalBox:amount
MiraBox\SmartBox
-------II-------II-------II

7. Send Box and
the Password to the recipient 8. Request for withdrawal of funds

6. Information about event status

Oracles

2. Unique Node address

9. Information about
status of case opening

4. Wallet address

MiraWallet
(Receiver)

3. Key pair generation 10. Request for
withdrawal of funds

User-System Interaction Scheme
11 of 13 11

2. Nodes receive notification about a newly created box, the addresses of several randomly chosen
nodes are saved in the smart contract, which enables finding out which nodes can be used for
participating in opening the box, for which they will be rewarded with a bonus.

3. The aforementioned nodes generate and save pairs of multisignature keys of the corresponding
currency/currencies.

4. The multisignature wallet address is returned to the contract.

5. The Mira application generates a pair of keys for the corresponding currency, encrypts the private
key with a password, uploads the public key, and the hash from the private key is passed to the smart
contract.

If (apart from the cryptocurrency) a MiraBox contains arbitrary information, i.e. the container is a
MultiBox, it is also placed in the contract in encrypted form. Data is asymmetrically encrypted using
ECC with the public keys already saved in the smart contract in step 3 and symmetrically using AES-26,
user password.

6. Oracles record the occurrence of the determined event in the contract if it is a SmartBox.

7. The creator of the box transfers it to the recipient together with the password.

8. The recipient opens the Box file in the Mira application, enters the password, and if the password
is correct the system is able to extract a private key which is used to call the contract which enables
withdrawal of funds from MiraBox.

9. Nodes receive the data regarding successful opening from the blockchain.

10. Nodes using the private keys created during step 3 make a request to the multisignature wallet
to withdraw funds. If all the signatures are correct the funds are successfully withdrawn. If it is a
MultiBox with arbitrary information, the nodes also pass the generated private keys to the contract for
decryption of this information.

Security
12 of 13 12

7. Security

7.1. Multisignature Mechanism

7.2. MiraBox File Double Encryption

7.3. Oracles

To open a MultiBox containing cryptocurrency, it is necessary to undergo multisig-verification. This
means that more than one ECDSA signature is needed to make a transaction.

So, no member of the system can gain access to the tools unilaterally. At the same time after opening, a
MiraBox is marked as used and cannot be used again in a MiraWallet.

The Mira platform is a decentralized service, thanks to which any potential unauthorized access to
any infrastructural elements will not allow access to MiraBox content. The following cryptographic
algorithms are used for encryption: AES-256 and ECC-Secp256k1. These algorithms provide robust
protection for MiraBox files from local bruteforce.

All the system components are opensource-solutions whose source code will be available on GitHub
and can be audited by anyone.

Interaction between microservices whose API is presented as REST (for example, JSON-RPC) is
carried out using only HTTPS with a trusted, signed SSL certificate.

When creating a MiraBox through MiraWallet, its content is encrypted with the help of the AES-26
symmetrical algorithm. If a user creates a MultiBцox, then additionally content is encrypted with
asymmetrical ECC (Elliptic-curve cryptography.)

A distributed system of predicting offchain-events, built on the same principle as the Oraclize and
ChainLink services. That is, events are checked by multiple independent servers with a reputation-
rating system which is used to carry out PoS (Proof-of-stake) confirmation of an oracle’s prediction.

All materials contained in this Technical Specifications for Platform Development are protected
by copyright laws, and may not be reproduced, republished, distributed, transmitted, displayed,
broadcast or otherwise exploited in any manner without the express prior written permission of
MIRASOFT TECHNOLOGY PTE. LTD.

MiraLab’s names and logos and all related trademarks, tradenames, and other intellectual property
are the property of MIRASOFT TECHNOLOGY PTE. LTD, and cannot be used without its express prior
written permission from MIRASOFT TECHNOLOGY PTE. LTD.

